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Abstract: In the recent years, phenomenological models of moduli stabilization were

proposed, where the dynamics of the stabilization is essentially supersymmetric, whereas

an O’Rafearthaigh supersymmetry breaking sector is responsible for the ”uplift” of the

cosmological constant to zero. We investigate the case where the uplift is provided by a

Fayet-Iliopoulos sector. We find that in this case the modulus contribution to supersym-

metry breaking is larger than in the previous models. A first consequence of this class of

constructions is for gauginos, which are heavier compared to previous models. In some

of our explicit examples, due to a non-standard gauge-mediation type negative contribu-

tion to scalars masses, the whole superpartner spectrum can be efficiently compressed at

low-energy. This provides an original phenomenology testable at the LHC, in particular

sleptons are generically heavier than the squarks.
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1. Introduction

Recently, Kachru et al. [1] proposed a strategy to stabilize the moduli in the context of type

IIB string theory orientifold, following earlier work [2]. The KKLT set-up involves three

steps to achieve a SUSY breaking Minkowski vacuum, while stabilizing all moduli. We will

consider in this study a KKLT-like model where all the complex-structure moduli are fixed

by the introduction of background fluxes for NS and RR forms. All steps except the last

one (uplifting through the addition of one anti D3-brane, analyzed in detail in [3]) can be

understood within the context of an effective supergravity. Whereas several attempts [4]

tried to use the D-term to uplift the supersymmetric minima, it was shown that this can

work only for a gravitino mass of the order of the GUT scale. It was however possible to

obtain TeV gravitino mass by introducing corrections to the Kahler metric [5, 6]. Other

works insisted on the possibility of using F-terms of matter fields in a decoupled sector to

uplift the anti-de Sitter minima through metastable vacua [7 – 9].
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In this note we describe a new way to obtain de Sitter space with a TeV gravitino mass

by using a Fayet-Iliopoulos (FI) model [10] as uplift sector. The uplifting is realized through

the appearance of a non-zero F -term induced by the vev’s of matter-fields charged under

an anomalous U(1)X . The F-term is directly induced through the D-term contribution

in the minimization procedure. Moreover, the U(1)X invariance of the superpotential

implies a natural coupling between the moduli fields and the matter charged fields under

the U(1)X , which changes substantially the pattern of soft breaking mass terms compared

to KKLT. The framework can be naturally realized in orientifolds with internal magnetic

fields and is simple enough to be able to address detailed phenomenological questions. One

of the main advantages compared to previous uplifts [3, 8, 9] is a larger contribution of

the modulus to supersymmetry breaking, which increases the tree-level gaugino masses.

Moreover, due to the details of the model mostly related to anomaly cancelation, it is

natural to introduce messenger-like fields which realize a very particular version of the

gauge mediation proposed some time ago by Poppitz and Trivedi [11] (see also [12]), in

which gauge mediation contributions to scalar masses are negative. This naturally leads us

to a mixed gravity-gauge mediation scenario, where gauge contributions of a non-standard

type [11] are generated at high scale and compete with the gravity contributions. The

resulting soft spectrum at low-energy has new features compared to other supersymmetry

breaking schemes, in particular the spectrum is compressed, i.e. gauginos and scalar masses

have values closer to each other than in mSUGRA, gauge mediation or the mixed modulus-

anomaly mediation. For related phenomenological analysis of string compactifications with

stabilized moduli, see e.g. [13]. The plan of our paper is the following. In section 2 we review

the various uplift mechanisms, insisting on the (non)decoupling of the sector realizing the

cancelation of the cosmological constant. In section 3 we define our working model, based on

a FI sector with an anomalous U(1)X gauge symmetry, and analyze its vacuum structure.

Section 4 presents a microscopic realization in terms of string orientifold models with

internal magnetic fields and invoking stringy and spacetime instantons effects in order

to obtain the main couplings of our model. In section 5 we couple our supersymmetry

breaking sector to MSSM and analyze the resulting superpartner spectrum at high and

low-energy from the viewpoint of electroweak symmetry breaking. In section 6, by using

anomaly cancelation arguments, we enlarge our model by adding messenger like fields, chiral

with respect to the U(1)X symmetry. The messenger fields have a peculiar spectrum, in

particular StrM2 > 0 and will generate, via gauge mediation diagrams, non-standard gauge

contributions [11], which will change the low-energy spectrum in an interesting way. We end

with some brief summary of results and conclusions. The appendix contain a more detailed

derivation of the crucial term coupling the SUSY breaking sector to the modulus sector.

2. Uplifting and decoupling

The philosophy advocated in [1] to stabilize moduli with zero cosmological constant was

to separate the process into three steps:

• Add all possible fluxes in order to stabilize most of the (in type II, the dilaton and

the complex) moduli fields.
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• Add additional (nonperturbative in type IIB) effects in order to stabilize the remain-

ing (Kahler moduli in type II) moduli. The corresponding dynamics is supersym-

metric, generically generating a negative cosmological constant.

• Uplift the vacuum energy to zero by a source of supersymmetry breaking which

perturbes only slightly the steps above.

The last step was realized originally in [1] by adding an anti D3 brane at the end

of the throat in the internal manifold, while later on it was argued [7, 8] and explicitly

shown [9] that this can be naturally realized with the help of a decoupled sector breaking

dynamical supersymmetry in the rigid limit. In its manifestly supersymmetric realization,

by denoting collectively Tα the moduli left unstabilized after the first above and by χi

the fields responsible for dynamical supersymmetry breaking and the uplift of the vacuum

energy

Kij̄DiWDjW = 3 m2
3/2M

2
P , (2.1)

the decoupling of the two sectors is symbolically described in an effective supergravity

action by writing

W = W1(Tα) + W2(χi) ,

K = K1(Tα, T̄α, ) + K2(χi, χ̄i) . (2.2)

The result of this decoupling is the generation of the scalar potential of the form

V ≃ VSUSY(Tα, T̄α) +
1

(Tα + T̄α)p
Vuplift(χi, χ̄i) +

χiχ̄i

M2
P

V1(Tα, T̄α) + · · · , (2.3)

where the index p depends on details of the uplift sector and the term V1 represents the

first term in an expansion which mixes non-trivially, due to supergravity interactions, the

modulus sector with the uplift sector. For the case of interest 〈χi〉/MP ≪ 1, the decoupling

is very efficient and has the main consequence of perturbing very little the supersymmet-

ric modulus stabilization dynamics. This reflects itself in the very small contribution of

the modulus to supersymmetry breaking, which was estimated in [9], for the case of one

modulus, to be

KT T̄ DT WDT̄ W ∼ 1

(T + T̄ )2
Kij̄DiWDj̄W ≃

3 m2
3/2M

2
P

(T + T̄ )2
. (2.4)

The small contribution of the modulus to supersymmetry breaking in this class of uplifting

mechanism has the important outcome that generically the gauginos are much lighter

than the gravitino [3, 9]. Consequently, in order to find accurate predictions, one-loop

contributions, in particular the anomaly-mediated ones are needed, resulting in the so-

called mirage unification of gaugino masses.

It was clear from the very beginning that, while such a decoupling renders the uplifting

easy to realize, it is by no means mandatory for the stabilization with zero vacuum energy.

It is indeed conceivable to contemplate the possibility of a sector breaking supersymmetry

that, due to various reasons, in particular gauge invariance consistency constraints, has
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a non-trivial coupling to the modulus (KKLT) sector. This non-decoupling was actually

forced upon us by gauge invariance in the D-term attempts to uplift the vacuum energy [4],

having as a result a very heavy gravitino mass. Notice that in the original version with

anti D3 branes [1], a naive attempt to couple more strongly the two sectors by increasing

Vuplift results actually in a run-away potential which destroys the minimum.

In the next sections we provide explicit examples where this non-decoupling is success-

fully realized.1 Similarly to the D-term uplifting models, the non-decoupling is unavoidable

due to gauge invariance constraints. In the present case, due to the use of a FI uplift sector,

the novelty is the presence of a new supersymmetry breaking source which generates a pos-

itive vacuum energy, similar to the F-term uplifting models [8, 9]. As a result, compared

to (2.4), we get a modulus contribution to SUSY breaking bigger than in [8, 9] by a factor

(4 + q)/3, where q is a U(1)X charge that will be defined more precisely later on.

3. The model and its vacuum structure

Our model in its globally supersymmetric limit is a variant of the Fayet-Iliopoulos model

of supersymmetry breaking. It has two charged fields Φ± of U(1)X charges ±1, a con-

stant term W0 relevant, as usual, for the supergravity generalization, and a new term

parametrized by a constant a which couples Φ− to the modulus under consideration T .

This last term is the main novelty and ensure the gauge invariance of the nonperturbative

superpotential term. In the language of N = 1 Supergravity (SUGRA), we consider the

gauge invariant superpotential

W = W0 + m φ+φ− + a φq
− e−bT , (3.1)

where W0 is an effective parameter coming from having integrated out all complex struc-

ture moduli through the use of fluxes. It is worth noticing here that following what was

demonstrated in the first reference of [3], we expect that the inclusion of the moduli we

integrated out (which are not charged under U(1)X ) does not change the dynamic of the

model. A Fayet-Iliopoulos (FI) term is generated in the 4D effective action of the form2

VD =
4π

T + T
D2 =

4π

T + T

(

|φ+|2 − |φ−|2 +
ξ2

T + T

)2

. (3.2)

The non-perturbative potential is either generated by Euclidean D3-branes or by gaugino

condensation [15] . The charged field φ− restores the gauge invariance of the nonpertur-

bative modulus-dependent superpotential [16 – 18].

Indeed, the U(1)X gauge transformations act on various fields as

δVX = ΛX + Λ̄X , δΦi = −2qiΦiΛX ,

δT = δGSΛX , (3.3)

1Recently, another example of non-decoupled sectors was provided in the context of heterotic strings

in [14].
2The exact form of the D-term depends in principle on the precise form of the Kahler metric. We take

K = |φ+|
2 + |φ−|

2 − 3 ln(T + T ) in what follows, but we will comment later on about other options in the

analysis. The term ξ2 can be interpreted as ξ2 = 3/2δGS if the FI term arises from non-trivial fluxes for

the gauge fields living on the D7-branes.
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where qi are the charges of the fields Φi. Gauge invariance forces the Kahler potential for

the modulus T to be of the form K(T + T̄ − δGSVX). This leads in turn to the FI term

ξFI = −δGS

2
∂T K =

3δGS

2

1

T + T̄
(3.4)

and fixes ξ2 = 3δGS/2. From eq. (3.1), it is clear that imposing q = (b/3)b ξ2 ensures the

gauge invariance of the model. The numerical values we will be interested in what follows

are

ξ ∼ MP , m ≪ MP , W0 ≪ M3
P . (3.5)

The first requirement in (3.5) is natural from the string theory viewpoint, whereas the third

relation is needed in order to get m3/2 ∼TeV; the landscape picture of string theory could

be invoked in order to achieve this [1]. The smallness of the mass term m in our model is

then an outcome from a proper cancellation (uplift) of the cosmological constant. The most

natural explanation for it, in our opinion, is in terms of stringy instanton effects recently

discussed in the literature [19], which can provide values m ∼ exp(−SE)MP , where SE is

the area of the euclidian brane responsible for the mass term.

From eq. (3.1) we can deduce explicitly the F-part of the scalar potential given by

VF = eK
(

KijDiWDjW − 3 |W |2
)

, (3.6)

where Kij is the inverse of the Kij = ∂2K/∂Φi∂Φj̄ metric and Di is the Kahler covariant

derivative: DiW = ∂iW + (∂iK)W . Using a conventional Kahler potential of the form

K = |φ+|2 + |φ−|2 − 3 ln(T + T ), we can rewrite eq. (3.6) as:3

VF =
1

(T + T )3

[

(T + T )2

3
|WT − 3

T + T
W |2 + |D+W |2 + |D−W |2 − 3|W |2

]

. (3.7)

The scalar potential is given explicitly as

V (φ+, φ−, T ) =
1

(2Re[T ])3

[

(2Re[T ])2

3
|abφq

−e−bT |2

+2Re[T ]
(

abφq
−e−bT W̄ + āb̄φ̄−

q
e−b̄T̄ W

)

+|mφ+ + aqφq−1
− e−bT + φ̄−W |2 + |mφ− + φ̄+W |2

]

+
4π

2Re[T ]

[

|φ+|2 − |φ−|2 +
ξ2

2Re[T ]

]2

. (3.8)

3The Kahler metric of the charged fields Φ± can be more complicated and can also depend on T . We

checked explicitly that with the Kahler potential K = −3 ln(T + T̄ − |Φ2
| − |Φ + |2) we obtain very similar

results. The main changes are that, in going from the SUGRA basis to a low-energy one, the rescaling

of the parameters and fields is different. Therefore keeping the same numerical values of the low-energy

parameters, those at high-energy have to be slightly modified. Nonetheless, these new values are consistent

with the modified approximations needed with such a changed Kahler metric, and the whole procedure

remains valid.
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The nonperturbative term has significant consequences both on the resolution of the equa-

tion of motion for φ+ and φ−, and on the uplifting mechanism. It is important to notice

here that due to the intricate coupling between φ− and T , in solving the equations of

motions, we cannot neglect the supergravity corrections to |F+|2 and |F−|2 in the scalar

potential. In what follows we define as usual

F i = eK/2 Kij̄ DjW . (3.9)

Asking for a zero cosmological constant at the minimum, we can find immediately

a relation at first order between the gravitino mass and the parameters of the model by

anticipating that the uplift is mainly induced by F+:

|F+|2 ≃ 3m2
3/2M

2
P → |mφ−| =

√
3 |W0| . (3.10)

Solving now the equations ∂Veff/∂φ+ = ∂Veff/∂φ− = 0, using the approximations allowed

by the choice of the parameters, and always fixing the cosmological constant to zero, we

obtain at the first order4

D = |φ+|2 − |φ−|2 +
ξ2

2Re[T ]
=

2Re[T ]

8π

m2

(2Re[T ])3
. (3.11)

φ− =

√

ξ2

2Re[T ]
=

√

3q

2bRe[T ]
, (3.12)

φ+ = − 3q

2bRe[T ]

[

2aqe−bT

m

(

3q

2bRe[T ]

)
q−3
2

− 1√
3

]

. (3.13)

We can check our approximation by defining a parameter ǫ̃ which will be fundamental

in the calculation of the soft breaking term. ǫ̃ measures the contribution of T to the uplift:

ǫ̃ = 2Re[T ]
abe−bT φq

− + 3W/(2Re[T ])√
3mφ−

=
FT

F+
. (3.14)

Solving ∂T V (T, φ+, φ−)φ+,φ− = 0 with the reasonable hypothesis5

a e−bT ≪ W0 ≪ m (3.15)

and φ+ ≪ φ− (hypothesis that we check aposteriori), we obtain at first order

ǫ̃ =
4 + q

2bRe[T ]
− 2√

3
φ+ , (3.16)

which gives for a typical KKLT value 2bRe[T ] = 60, ǫ̃(q = 1) ∼ 1
12 and ǫ̃(q = 2) ∼ 1

6 which

is bigger than the values obtained in sequestered F-term uplifting [9], where

ǫ̃F−uplift =
3

2bRe[T ]
. (3.17)

4For simplicity, we take all the parameters to be real and we choose the real positive solution for the

vev of φ−. The general case of complex parameters does not change significantly the results.
5If the conditions (3.15) are violated, it turns out not to be possible to realize the uplift of the cosmological

constant with a TeV gravitino mass.
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It turns out that the numerical solution of the equation of motion for T is very close

to the supersymmetric minimum for T , whereas the numerical solutions for φ+, φ− are

very close to the analytical ones (3.12), (3.13); the deviation from it can be parameterized

by expanding in a perturbative parameter of the theory (which is ae−bT /m in our specific

case), checking in the meantime the analytical consistency of the whole procedure. In fact,

this procedure is remnant of the one used in the original KKLT paper where the authors

noticed that the term induced by the anti D3-brane which is proportional to 1/Re[T ]2,

does uplift the potential without disturbing significantly the shape and the value of Re[T ]

at the minimum. F-term uplifting exhibit similar features in the sense that it can be seen

(see eq. (3.7)) as an uplift proportional to |DiW |2/Re[T ]. However, it is important to

point two main differences with KKLT models [1] and F-term uplifting ones [8, 9]. Indeed,

firstly the F-term breaking parameters Fi are induced by the D-term, which imposes a

non vanishing vev for φ+ and especially φ− at the minimum of the potential. Secondly,

the gauge invariant term ae−bT φq
− in W imposes more constraints on the parameter space,

linking directly the FT and F+ in the minimization procedure. It turns out that FT is

more important in this case and participate more to the cosmological constant cancelation.

One of the main consequences appears on the gaugino masses (Mi ∝ FT /(2Re[T ])), which

are heavier than in previous uplift schemes. One of the main difference with the models

inspired by D-term uplifting is the possibility to achieve a TeV scale SUSY breaking.

At the first order, the value of T at the minimum respects the condition FT = 0, i.e.

abe−bT φq
− = − 3W

2Re[T ]
≃ − 3W0

2Re[T ]
. (3.18)

The mass of the gravitino is given by W/(2Re[T ])3/2. To illustrate the procedure, we

apply the minimization condition to find a phenomenological viable point in the parameter

space. We fix W0, b and q. ξ2 is given by the gauge invariance constraint, t = Re[T ] (and

m3/2) are obtained by the minimization procedure, whereas m is fine-tuned to ensure a

zero cosmological constant. For the numerical values provided in figure 1, we obtain:

m3/2 = 3.3 TeV,
√

D = 52.3 TeV, t = 60. MP ,

φ+ = −2.9 10−2 MP , φ− = 0.22 MP . (3.19)

Concerning the contribution of various fields to the uplift, we obtain FT ∼ F− and ǫ̃ =

FT /F+ ∼ 1/12.

4. Microscopic definition of the model

The setup we are considering is very similar to the one proposed in [20, 18, 4], with

slight modifications. We start with type IIB string propagating on a Calabi-Yau manifold,

orientifolded with an involution Ω′ = Ωσ, σ2 = 1 which generate non-dynamical O7 and

O3 orientifold planes. They ask for consistency the introduction of D7 and D3 branes.

The non-trivial dynamics we will be concerned happen on the D7 branes. The relevant

ingredients for our discussion are two stacks of D7(1) and D7(N) branes , giving rise to

– 7 –
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80
Re[T]
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Figure 1: Scalar potential for m = 0 (left) and m 6= 0 (right) for W0 = −4.3 × 10−13, q = 1 and

b = 0.5. The other parameters are determined by gauge invariance conditions, minimization of the

potential and zero cosmological constant : m = 3.15 × 10−12, t = 60. and ξ2 = 3, which gives a

gravitino mass of 3.3 TeV.

an U(1)X and an U(N) gauge groups. The stack D7(N) wraps a four-cycle of volume

V , which suitably combined with an axion obtained by wrapping the RR four-form over

the four-cycle a ∼
∫

C(4), forms the complex Kahler modulus T = V + ia. The massless

chiral open string spectrum for an arbitrary number of stacks of branes can be given a more

geometrical interpretation by performing three T-dualites in a IIA setting with intersecting

D6(a) branes [22]. In IIA orientifolds with D6 branes at angles, each stack D(a), containing

Ma coincident branes, has a mirror D(a′) with respect to the O6 planes. The chiral spectrum

for type II orientifold Calabi-Yau compactification with intersecting branes contains chiral

fermions in

sector representation multiplicity of states

D(a) − D(b) (M̄a,Mb) Iab

D(a′) − D(b) (Ma,Mb) Ia′b

D(a′) − D(a) Ma(Ma − 1)

2

1

2
(Ia′a + IOa)

D(a′) − D(a) Ma(Ma + 1)

2

1

2
(Ia′a − IOa) , (4.1)

where Iab is the intersection number between the stacks D(a) and D(b), Ia′b is the intersec-

tion number between the images D(a′) and D(b), whereas IOa is the intersection number

between the stack D(a) and the O6 planes. In the original type II language, the intersection

numbers are mapped into magnetic fluxes [21, 22].

For the two stack case discussed above and in the type IIA picture, we take the U(1)X
brane to intersect along a six-dimensional subspace with the O-planes. This means that

the spectrum of the states stretched between the U(1)X brane and its image is non-chiral

and is described in four-dimensional language by fields φ± of U(1)X charges ±2. We

take the multiplicity of these states, which correspond to the symmetric representations

– 8 –
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in (4.1), to be equal to one. If the second stack U(N) does not intersect the O-planes, the

symmetric/antisymmetric representations are absent and only the byfundamental chiral

multiplets Q = (N, 1) and Q̃ = (N̄ , 1), of multiplicity Nf < N , are charged under the

non-abelian gauge group. In the type IIB language, the axion field coupling to the U(N)

gauge fields get charged under the U(1)X gauge field of the first stack if the two stacks

intersect over a two-dimensional cycle on which the magnetic flux is non-trivial [23]. In

this case we get the typical Stueckelberg couplings

1

2
(∂µa + δGSAµ)2 , (4.2)

rendering the U(1)X gauge field massive. The supersymmetric description of this phe-

nomenon is precisely the one described in eqs. (3.2)–(3.4).

If Nf < N , the non-abelian stack U(N) will undergo gaugino condensation and gener-

ate a non-perturbative ADS type superpotential in terms of the ”mesonic” fields M = QQ̃.

Wnp = (N − Nf )

(

e−2πT

detM

)

1
N−Nf

. (4.3)

It was shown long ago in a similar heterotic context [16] and updated recently for orien-

tifolds [18, 4, 23] that, once the Green-Schwarz anomaly cancelation conditions are imposed,

the U(1)X charges of the mesons are precisely such that the gauge variation of T in (4.3)

is compensated by that of the mesons. In addition to the D-term potential (3.2) and the

nonperturbative term (4.3), the other terms in the superpotential defining our model are

W1 = W0 + λ φ−QQ̃ + mφ+φ− . (4.4)

The constant W0 can be generated by closed string three-form fluxes [2, 1] which stabilize

the dilaton and the complex structure moduli, whereas the second term in (4.4) is a disk-

level perturbative open string coupling. The last term, which will turn out to be crucial

for our purposes, deserves a special discussion. Unless the U(1)X stack and its image are

parallel to each other in some internal subspace, the mass m cannot have a perturbative

origin (like for example Wilson lines). In what follows we will advocate a non-perturbative

origin m ≪ MP . There are two possibilities for generating an exponentially small mass

term m. The first option is provided by stringy instanton effects [19]. The instantons under

consideration can be E(−1) instantons or E3 instantons wrapping cycles different than the

one defining the Kahler modulus T under consideration. The resulting parameter m is then

proportional to m ∼ exp(−SE)MP , where SE is the instanton action. The other option

uses a second sector undergoing spacetime nonperturbative dynamics. This could arises,

for example, if the U(1)X brane is part of a bigger stack of branes U(M) = U(1)X ×SU(M),

with the non-abelian part SU(M) undergoing non-perturbative phenomena, for example

gaugino condensation 〈λλ〉 = Λ3
M . Then an open string perturbative coupling

∫

d2θ
W α,MWα,M

M2
P

φ+φ− → Λ3
M

M2
P

∫

d2θ φ+φ− , (4.5)
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generates a hierarchically small mass parameter m = (Λ3
M/M2

P ). We can notice that

the main assumption made here is that the gaugino condensation scale depends on other

moduli, which were already stabilized by high-energy dynamics. Integrating these moduli

out could also add higher-order terms in the superpotential and in the Kahler potential,

but provided the vev’s of φ± ≪ 1 in Planck units, we expect these contributions not to

destabilize our vacuum.

Whereas it is fair to say that constructing a complete, global model along these lines

could be a difficult task, there is no conceptual obstruction to the implementation of

the ingredients that we need in order to define completely our model in a semi-realistic

compactification.

Finally, by invoking the stringy instanton effects described previously or, alternatively,

by integrating out the quarks Q, Q̃ of the hidden sector as described in detail in the ap-

pendix, we arrive at the generic form of the superpotential

W = W0 + mφ+φ− + a φq
− e−bT , (4.6)

that was defining our model analyzed in the previous section.

5. Soft-breaking terms

In what follows we investigate the effects of supersymmetry breaking in the observable

sector, that we take for simplicity to be the Minimal Supersymmetric Standard Model

(MSSM). Irrespective on which type of brane MSSM sit (D7 or D3 branes), if they contain

magnetic fluxes the gauge kinetic functions contain a T-dependence

fa =
ca

4π
T + f (0)

a , (5.1)

where ca are positive numbers6 and f
(0)
a effective constants generated by the couplings

of the MSSM branes to other, stabilized fluxes (e.g. the dilaton S). By denoting in what

follows by i, j matter fields and by greek indices α any field contributing to SUSY breaking,

a relevant quantity for computing the soft terms [24] is the coupling of the matter fields

metric Kij̄ to the SUSY breaking fields. This can in turn be parameterized as

Kij̄ = (T + T )ni

[

δij̄ + (T + T )mij |φ+|2Z ′
ij

+ (T + T )pij |φ−|2Z ′′
ij

+(T + T )lij (φ+φ−Z ′′′
ij

+ h.c) + O(|φi|4)
]

, (5.2)

where G = K + log |W |2, Kij̄ = ∂i∂j̄K, i and j representing the matter fields, not partic-

ipating to the SUSY breaking mechanism (Gi = 0). The metric Kij̄ in (5.2) is written as

an expansion in powers of the charged vev fields φ±/MP ≪ 1, up the quadratic order.

6In the rest of the paper we consider ca > 0. This is easier to obtain in a string setup and also safer for

phenomenological purposes, since for ca < 0 there is a serious danger of destabilizing the vacuum.
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5.1 Scalar masses

For the calculation of the scalar mass, we use the classical formulas at the linear order in

the D-term [18, 25]

m̃2
0|ij̄ = m2

3/2

[

Gij̄ − GαGβRijαβ

]

+
∑

a

g2
aDa∂i∂j̄Da , (5.3)

with the standard definitions

Rijαβ = ∂i∂jGαβ − Γm
iαGmnΓn

jβ
, Γm

iα = Gmk∂αGik . (5.4)

For the uncharged7 scalar mass terms we obtain, after normalization of the kinetic

terms:

(m̃2
0)ij = m2

3/2

[

δij̄ +
ni

(T + T )2
|GT |2δij̄ − |G+|2(T + T )mij+

ni−nj

2 Z ′
ij

−|G−|2(T + T )pij+
ni−nj

2 Z ′′
ij

]

. (5.5)

Notice that the contribution to the scalar masses coming from the moduli, depending

on the unknown moduli weights ni, is suppressed compared to the universal first term.

This comes actually from the uplift field Φ+, via the purely supergravity interactions, as

in the mSUGRA case . The third term, coming from the main uplift field Φ+, is also

negligibly small if rij ≡ mij + (ni − nj)/2 ≤ −1, whereas it is comparable to the universal

contribution for rij = 0 and dominant for rij > 0. Whereas this last case cannot arise in a

string compactification, the case rij = 0 could and deserve a more detailed study from the

viewpoint of possible flavor-dependent Φ+ couplings. Since Φ+ is a charged and therefore

open-string/brane-localized field, whereas the modulus T is a closed/bulk field, the pattern

of the flavor dependence of their respective couplings to MSSM fields is clearly different. In

particular, whereas it is very difficult to supresss the mixed modulus-MSSM fields couplings

(first term in the rhs of (5.2)) in the Kahler potential, this can be easily realized for the uplift

open field (the second term in the rhs of (5.2)) Φ+.8 In this last case (or if the Φ+ couplings

are flavor-universal), the scalar masses (5.5) do not generate dangerous FCNC effects.

In conclusion, under reasonable assumptions, the dependence of the soft masses on the

unknown quantities ni,mij , Z
′
ij̄

, Z
′′

ij̄
is weak and can be neglected in a first approximation.

For the phenomenological analysis performed in the next section we analyze in detail the

universal case, where the gravity-mediated contributions are dominated by the universal

term (m̃2
0)ij̄ ≃ m2

3/2δij̄ .

5.2 Gaugino masses

The gaugino mass for a general gauge kinetic function fa is given by [25]:

Ma =
∂T fa

Re[fa]
eK/2KTTDT W . (5.6)

7We anticipate, for reasons that we discuss later on, that the MSSM fields are neutral with respect to

the U(1)X symmetry.
8These comments also apply to a generic F-term uplift [8, 9].
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With the hypothesis of a gauge kinetic function given in (5.1), we obtain

Ma = m3/2αa
(T + T )

3

DT W

W
= m3/2αa

(T + T )

3
GT , (5.7)

where

αa =
ca

ca + 4πf
(0)
a /T

. (5.8)

For the phenomenological analysis performed in the next section we analyze in detail the

unified case αa ≃ 1, which is easily realized for 4πf
(0)
a ≪ caT .

5.3 Trilinear couplings

The general formulas for the trilinear couplings including the D-term contribution can be

found in [18, 25]

AKLM = eG [3 + Gα∇α]∇K∇L∇MG +
∑

a

g2
aDa∇K∇L∇MDa , (5.9)

where ∇iG = ∂iG = Gi, ∇iGj = Gij − Γk
ijGk, etc. It is easy to show that the last

contribution in (5.9) coming from the D-term is in our case negligible. Applying it to our

special case, after normalization of the kinetic terms and for a typical superpotential for

matter fields of the form Wm = 1
6WKLMQKQLQM , we get

AKLM = m3/2

[

3W 0
KLM − GT

2(T + T )
(nK + nL + nM − 3)W 0

KLM

+GT ∂T W 0
KLM − 3G+φ̄+

(

(T + T )
nK−ni

2
+mKiZ ′

KiW
0
iLM

)

symm.
(5.10)

− 3G−φ̄−

(

(T + T )
nK−ni

2
+pKiZ ′′

KiW
0
iLM

)

symm.

]

,

where symm. denotes the symmetrized parts in the (KLM) indices and

W 0
KLM = e

K
2 (K−1/2)K

′

K (K−1/2)L
′

L (K−1/2)M
′

M WK ′L′M ′ = (T + T )−
(3+nK+nL+nM )

2 WKLM

(5.11)

are the low-energy (for canonically normalized fields) Yukawa couplings.

Comments similar to the ones concerning the flavor-dependence of soft masses apply

here. Analogously to the discussion concerning soft scalar masses, the dependence of trilin-

ear A-couplings on the unknown quantities ni, Z
′
ij̄

, Z
′′

ij̄
can be neglected under reasonable

assumptions. For the phenomenological analysis performed in the next section we analyze

in detail the gravity-universal case AKLM = 3m3/2W
0
KLM .

5.4 µ and Bµ terms

The µ parameter and bilinear coupling arises in our model through a Giudice-Masiero

mechanism [26]. We will suppose a Kahler metric of the form

K = K0 + Z(T, T ) [H1H2 + h.c] (5.12)
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where Z(T, T ) is a modular function ensuring the modular invariance of the term

Z(T, T )H1H2. With this convention, we can deduce

µ = m3/2 Z(T, T ) , Bµ = m2
3/2

[

2Z(T, T ) + Gα∇αZ(T, T )
]

+
∑

a

g2
aDa∇H1∇H2Da

(5.13)

with Da∇H1∇H2Da = −3
2ξD∂T Z(T, T ) in our case. The modular function Z(T, T ) allows

a certain flexibility of µ and Bµ terms with respect to the gravitino mass. We will use this

flexibility in order to determine the appropriate parameters from the analysis of electroweak

symmetry breaking in the next section.

5.5 Phenomenology

If we apply the previous soft term calculations to the numerical example of eq. (3.19) we

obtain m̃0 = 3.3 TeV and Ma = 330 GeV. In this case, we have a splitting (a factor

10) between scalar masses m̃0 and gaugino masses Ma, smaller by a factor of two than

in the classical KKLT case. This implies that the one loop contributions (AMSB) are

less important here compared to the tree-level one. As we already mentioned, this comes

from the fact that GT participate more actively to the SUSY breaking and therefore its

contribution to the gaugino masses is more important compared to the KKLT or classical F-

term uplifting cases. We show the spectrum of some typical points in table 1. The absolute

value of µ is determined by the minimisation condition of the Higgs potential (assuming

CP conservation), but its sign is not fixed. Furthermore, instead of B it is more convenient

to use the low energy parameter tan β = 〈H0
2 〉/〈H0

1 〉, which is a function of B and the

other parameters. We first derive the soft breaking terms as boundary conditions valid at

the GUT scale. For concrete analysis, we will use the standard value of the unification

scale MGUT ∼ 2 × 1016 GeV. We then evolve these soft terms down to the electroweak

scale (at two loops), and impose several theoretical and experimental constraints The low

energy mass spectrum is calculated using the Fortran package SUSPECT [37] and its routines

were described in detail in ref. [37]. The evaluation of the b → sγ branching ratio, the

anomalous moment of the muon and the relic neutralino density is carried out using the

routines provided the program micrOMEGAs2.0 [38]. Minimizing the Higgs potential in the

MSSM leads to the standard relation

µ2 =
−m2

H2
tan2β + m2

H1

tan2β − 1
− 1

2
M2

Z , (5.14)

This minimization condition is imposed at the scale MSUSY =
√

mt̃1
mt̃2

. Eq. (5.14) can be

approximated in most cases by

µ2 ≈ −m2
H2

− 1

2
M2

Z (5.15)

When the right hand side is negative, electroweak breaking cannot occur. The Higgs mass

parameter m2
H2

is positive at the GUT scale, but decreases with decreasing scale down to

MSUSY , through the contributions it receives from RG running,
∂m2

H2
∂ log µ ≈ 6y2

t (m
2
H2

+m2
U3

+

m2
Q3

+ A2
t ). Typically, the value of m2

H2
at the scale MSUSY depends mainly on the soft

breaking terms m2
U3 and m2

Q3.
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A B

W0 −7 10−13 −4.3 10−13

m 7.3 10−12 4.5 10−12

a 1 1

b 0.3 0.5

q 1 1

tan β 30 15

t 98.3 59.4

µ (GeV) 810 1070

Bµ (GeV )2 (400)2 (870)2

mχ0
1

110 140

mχ+
1

220 290

mg̃ 760 950

mh 120 120

mA 2220 3290

mt̃1
1380 1770

mt̃2
1920 2610

mc̃1, mũ1 2580 3300

mb̃1
1910 2610

mb̃2
2310 3230

ms̃1, md̃1
2580 3300

mτ̃1 2290 3200

mτ̃2 2420 3230

mµ̃1 , mẽ1 2550 3270

Table 1: Sample spectra. All superpartner masses are in GeV, whereas W0, m and t are given in

Planck units. Both spectra give a relic density much above the WMAP constraint.

6. Anomalies and gauge messengers

6.1 Anomalies and messengers

Anomaly arguments that we discussed in section 3 and coupling of the MSSM gauge cou-

plings to the T-modulus introduced in the previous section strongly suggest that there

should be fields carrying Standard Model quantum numbers charged under the additional

U(1)X . Indeed, the couplings (5.1) generate, through the shift of T under U(1)X gauge

transformation (3.3) mixed U(1)X −G2
a anomalies, with Ga = SU(3),SU(2)L,U(1)Y being

a SM group factor. These anomalies imply some SM-charged fields have to carry positive

(for positive coefficients ca in (5.1)) U(1)X charges in order to cancel, via the 4d Green-

Schwarz mechanism, the mixed anomalies. There are two generic possibilities that realize

this, that we consider in turn:

• The SM quarks and leptons carry U(1)X charges. In this case, the squarks and the

sleptons will acquire D-term soft masses m̃2
0 ∼ D ∼ 100 TeV. If we wish to keep
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A+GMSB B+GMSB

W0 −7 10−13 −4.3 10−13

m 7.3 10−12 4.5 10−12

a 1 1

b 0.3 0.5

q 1 1

tan β 30 15

t 97.3 59.4

λ 1.7 10−3 1.1 10−3

NMess 6 6

µ (GeV) 186 216

Bµ (GeV )2 (330)2 (730)2

mχ0
1

120 150

mχ+
1

160 200

mg̃ 850 1060

mh 120 121

mA 1740 2770

mt̃1
990 1220

mt̃2
1280 1710

mc̃1, mũ1 1950 2420

mb̃1
1250 1700

mb̃2
1930 2690

ms̃1 , md̃1
1950 2420

mτ̃1 2130 2870

mτ̃2 2160 2960

mµ̃1 , mẽ1 2300 2910

Ωh2 0.12 0.12

Table 2: Sample spectra including gauge mediation contribution. All superpartner masses are in

GeV, whereas W0, m and t are in Planck units. The last line correspond to the relic abundance,

within WMAP bounds in each case.

some light superpartners and to minimize the fine-tuning of the electroweak scale,

one possibility would be to give a charge to the first two generations only [34]. The

large hierarchy betwen the first two and the third generation of squarks can generate

various problems, in particular the third generation could become tachyonic through

the RGE running towards low-energy [35].

• All MSSM fields (quarks, leptons and Higgses ) carry no U(1)X charges. In this case,

there should be additional fields carrying both SM and U(1)X charges. In order to

preserve perturbative gauge coupling unification and be able to give these states a

large mass, we only consider complete vector-like SU(5) multiplets, called generically

M and M̃ in what follows. Notice that these fields have precisely the features of the
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so-called ”messenger” fields in gauge-mediation scenarios [28].

These arguments strongly suggest therefore to introduce heavy messengers which can

contribute significantly to the soft SUSY masses breaking terms. In our model, coupling

the charged field φ− to the messengers pushes naturally the messenger scale up to the GUT

scale, still giving rise to important contributions to the scalar masses.

The superpotential is of the form:

Wmess = λφ−MM̃ , (6.1)

where M and M̃ represent the messenger fields of charges q and q̃ respectively. Without

loss of generality, we will take q = q̃ = +1/2 thorough the rest of the analysis. Notice

that the messenger fields, vector-like wrt to SM gauge interactions, are chiral wrt the

anomalous U(1)X symmetry. In (6.1), λ is the low-energy coupling, related to the high-

energy supergravity coupling by a formula similar to (5.11). Notice that for zero (or

positive) modular weights for Φ−, M , M̃ , the low energy coupling λ is highly suppressed

wrt the high-energy ones by inverse powers of T + T̄ .

In general, adding messengers to a supersymmetry breaking sector generates a new,

supersymmetry preserving vacuum. This is because in order to generate gaugino masses

we have to explicitly break R-symmetry, which in turns generically restores supersymme-

try [36]. In our case, however, due to the presence of the U(1)X gauge symmetry, this does

not happen; even in the presence of messenger fields, there is no supersymmetry preserving

vacuum. This is an important difference compared to standard gauge mediation models of

supersymmetry breaking.

Another very important outcome of the charged nature of messenger fields is a new

D-term contribution to scalar messenger masses.

The scalar messenger mass matrix is

M2
mess =

(

(λφ−)2 + 1
2g2

XD λF−

λF− (λφ−)2 + 1
2g2

XD

)

(6.2)

Once diagonalized the messenger scalar mass matrix, the two eigenvalues are:

m2
− =

[

(λφ−)2 +
1

2
g2
XD

]

− λF− m2
+ =

[

(λφ−)2 +
1

2
g2
XD

]

+ λF− , (6.3)

whereas the fermion mass is given by:

mf = λφ− . (6.4)

Notice that

(StrM2)mess. = 2 g2
X D 6= 0 . (6.5)

By standard gauge-mediation type diagrams, gaugino masses are induced at one-loop,

whereas scalar masses are induced at two-loops. Due to (6.5), the computation of the scalar

masses is slightly different compared to the standard gauge-mediation models, as shown
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by Poppitz and Trivedi [11]. In particular the result is not anymore UV finite, there is a

logarithmically divergence term which will play a crucial role in what follows.

In the context of our model, the uplift relation (3.10) has very strong phenomenological

implications. Indeed, if D-term contributions appear in the scalar soft mass terms of the

visible sector, through the two loops-suppressed GMSB mechanism , it turn out that their

magnitude is automatically of the same order as the gravity (i.e. m3/2) contribution. This

is clearly seen from our numerical example (3.19), in particular from the values of the

D-term.

6.2 Soft masses

The exact calculation of the radiatively induced gaugino and scalar masses is performed

in [11, 28]. For one messenger multiplet, we obtain for the gaugino mass

MGMSB
a =

g2
amfSQ

8π2

y− log y− − y+ log y+ − y−y+ log (y−/y+)

(y− − 1)(y+ − 1)
(6.6)

and for the scalar masses

(m̃GMSB
0 )2 =

∑

a

g4
a

128π4
m2

fCaSQ F (y−, y+,Λ2
UV/m2

f ) (6.7)

with yi = m2
i /m

2
f and where ga is the corresponding SM gauge coupling (unified at high

scale), Ca is the Casimir in the MSSM scalar fields representations (normalized as Ca(N) =

(N2 − 1)/(2N) for the fundamental representation of SU(N) gauge group, while for U(1)Y
it is simply Y 2 ) and SQ the Dynkin index of the messenger representation (normalized to

1/2 for a fundamental of SU(N)). The function F is given by

F (y−, y+,Λ2
UV/m2

f ) = −(2y− + 2y+ − 4) log
Λ2

UV

m2
f

+ 2(2y− + 2y+ − 4) + (y− + y+) log y− log y+

+ G(y−, y+) + G(y+, y−) , (6.8)

where

G(y−, y+) = 2y− log y− + (1 + y−) log2 y− − 1

2
(y− + y+) log2 y−

+2(1 − y−)Li2

(

1 − 1

y−

)

+ 2(1 + y−)Li2(1 − y−)

−y−Li2(1 − y−
y+

) . (6.9)

Li2(x) above refers to the dilogarithm function and is defined by Li2(x) =

−
∫ 1
0 dzz−1 log (1 − xz). After an expansion in the perturbative parameter ǫ = λF−/(λφ−)2

the mass terms become

MGMSB
a = SQ

m0g
2
a

8π2

(

φ+

φ−

)

, (6.10)
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where m0 is the low-energy mass parameter of the FI model, equal to m0 = m/(T + T̄ )3/2

for our model in section 3, and

(m̃GMSB
0 )2 =

∑

a

g4
a

128π4
CaSQ

[

−2g2
XD log

(

ΛUV

λφ−

)2

+ 2g2
XD + G(y−, y+) + G(y+, y−)

]

=
m2

0

64π4

∑

a

g4
aCaSQ

[

1 − log

(

ΛUV

λφ−

)2

+

(

φ+

φ−

)2
]

, (6.11)

where in the last line we used (3.11).

One important feature of eq. (6.11) is the presence of the log(ΛUV/λφ−) term in the

soft scalar masses. This logarithmic divergence arises typically in the presence of anomalous

U(1)X that gives a non-vanishing supertrace (6.5) for the messengers superfields [11]. In

low energy-GMSB, it usually limits the scale beyond which ”new physics” occurs, because

the scalars become tachyonic already for ΛUV/λφ− around 50. In our specific case, the

running is much shorter: from the FI scale (φ−) to the Planck scale (a factor less than 10).

Some remarks are in order concerning the anomaly-mediation contribution to soft

terms. For scalar masses, they are completely negligible compared to both gravity and the

non-standard GMSB contributions (6.11). For gaugino masses, they are much smaller than

the gravity contribution, whereas they are suppressed wrt to the standard GMSB contri-

butions (6.10) only by the number of messenger fields 1/Nmess. Since we consider relatively

large values Nmess = 6 in our analysis, we can neglect also the anomaly contributions to

gaugino masses in what follows.

6.3 Phenomenological effects

In the complete model, scalar and gaugino masses get contributions both from gravity and

the gauge mediation diagrams

(m̃2
0) = (m̃2

0)grav. + NMess(m̃
GMSB
0 )2 ,

Ma = (Ma)grav. + NMess(M
GMSB
a ) . (6.12)

The negative contribution to the scalar masses m̃0 induced by the ultraviolet divergence

has strong consequences on the mass spectrum and the phenomenology of the model. It

reduces significantly the masses in the left-handed squark sector (the more charged under

the SM gauge group) and can have repercussion in the neutralino sector through MH1. In

addition, decreasing the value of m2
U3 and m2

Q3 with gauge mediation naturally decreases

the value of µ2 through eq. (5.15).

We show in table (2) (table (1)) the spectrum with (without) the gauge mediation

contributions, after including the RG evolution to low-energy. The scalar spectrum and

nature of neutralino (through the µ parameter) are considerably altered. On the other

hand, the positive GMSB contribution to gauginos compresses even more the supersym-

metric spectrum, especially for a large number NMess of messenger fields. Notice that,

whereas for traditional messenger masses (i.e. around 100 − 1000 TeV), the RG running

up to the unification scale forces NMess ≤ 3 in order to avoid strong coupling effects, in
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Figure 2: Ratio of the (gauge mediated)/(gravity mediated) for the gaugino masses (blue line)

and the scalar masses (red dashed line) as function of λ (left) and the number of messenger (right).

our case since messengers have masses of order 1017 GeV, the number of messengers can

be larger. By using this (and/or also the alternative possibility of enhancing the negative

contribution to scalar masses by decreasing the coupling λ) we can obtain the efficiently

compressed spectrum displayed in table 2.

Notice that, in contrast to other scenarios (see for example [27] ) where the

gauge/gravity relative contributions are completely fixed, in our case, due to the pres-

ence of the two charged fields Φ±, the gauge and the gravity contributions to soft terms

are governed by different parameters. It is instructive to see in figures (2) the dependence

of the gauge contribution to soft terms as a function of the relevant parameters of the

model (λ and NMess). For low values of λ, the gauge contribution to the scalar mass be-

comes important, and even of the same order of magnitude than the gravity contribution

for λ ∼ 10−3. Indeed, smaller values of λ implies lighter messenger and thus a larger

running between Mmess and ΛUV. Gaugino masses are not affected by λ. The number

of messenger acts directly on the scalar and gaugino masses, and the gauge contribution

becomes relevant in both cases for NMess ∼ 6.

7. Conclusions

In this work, we tried to combine the various ingredients that a microscopic string theory

can provide in order to successfully stabilize moduli fields with a TeV gravitino mass. This

is realized via a supergravity version of the Fayet-Iliopoulos (FI) model with an anomalous

U(1)X gauge symmetry, in which a (non-linearly charged) modulus field T plays an instru-

mental role, whereas in turn the FI sector plays a crucial role in supersymmetry breaking

and for getting a zero vacuum energy. Due to the non-decoupling between the modulus

and the uplift sector, the contribution of the modulus T to supersymmetry breaking is
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higher than in previous schemes. This increases the numerical values of the gaugino mass

and renders less important the loop contributions to soft terms.

Due to the intrincate definition of the model, anomaly arguments strongly suggests the

presence in the spectrum of charged fields which have properties similar to messenger fields

of gauge mediation of supersymmetry breaking. Due to the charged nature of our mes-

sengers, their superpotential couplings are R-symmetric. As a consequence, in contrast to

standard gauge mediation scenarios, our messengers do not restore supersymmetry; there is

no new supersymmetric vacuum state due to their presence and couplings. Our model has

therefore a completely stable non-supersymmetric ground state, which is difficult to realize

in more standard gauge-mediation scenarios. Whereas, for the standard reasons, our mes-

sengers are vector-like with respect to SM gauge interactions, due to anomaly cancellations

they are however chiral with respect to the U(1)X interactions. Consequently, due to their

coupling to the FI supersymmetry breaking sector, they have a particular spectrum, in

particular (StrM2)mess. ∼ D 6= 0. The resulting mixed gravity/gauge mediation scenario

is therefore of non-standard type: the two-loop gauge mediation contributions to MSSM

scalars are negative [11]

The mass scales in the problem are such that gravity and gauge mediation contri-

butions to scalar soft masses are comparable and compete with each other, providing an

original predictive spectrum and phenomenology. Indeed, squarks, which are the heaviest

superpartners in most mediation scenarios, are here typically the lightest scalars since they

get the biggest negative contributions from the non-standard gauge-mediation contribu-

tion (6.11). Taking into account the larger than usual gravity-induced gaugino masses and

the additional positive contribution to them coming from gauge mediation diagrams, we

end up with an original low-energy spectrum in which the whole superpartners spectrum

is more compressed than in the usual mSUGRA, gauge or mixed modulus-anomaly medi-

ation scenarios. The complete mixed model of section 6 has the Higgsinos as the LSP and

a good relic abundance, compatible with the WMAP bounds. The peculiar details of the

spectrum, like the universality of gaugino masses at the unification scale and the negative

GMSB contribution to scalar masses, rendering squarks lighter than sleptons, could be

tested at LHC and certainly deserve a more focused study.

Finally, whereas in the present paper we get a bigger modulus contribution to super-

symmetry breaking than in previous O’Rafeartaigh type models, the main contribution

still comes from the uplift sector and more precisely in our case from the Φ+ field. It

is a very interesting and open question to find explicit realizations, with complete mod-

uli stabilization and zero vacuum energy, of the string-inspired supersymmetry breaking

parametrizations [25], which assumes moduli/dilaton domination. To our knowledge, this

does not seem to be realized in the current known models of moduli stabilization.

A. Dynamical origin for the superpotential

The aim of this appendix is to justify the coupling

W = . . . + ae−bT φq
− + . . . (A.1)
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that we considered in the superpotential of our model. We will show that this term has

its origin in strong coupling regime effects for the non-abelian gauge group of the hidden

sector, and that in particular it is induced by ”integrating out” the mesonic fields which

are the right degrees of freedom describing the theory in such regime.

As discussed in section 4, the microscopic description of the model implies Nf < N

chiral multiplets in the representions Q = (N, 1) and Q̃ = (N̄ , 1) of the gauge group

U(N) × U(1)X . Naturally, at a characteristic scale

Λ = MP e
− 2π

3N−Nf
T

, (A.2)

the non-abelian gauge group will enter in a strong coupling regime, it will undergo a gaugino

condensation and the model is properly described in terms of the mesonic field M = QQ̃,

of generic charge q′ under the U(1)X gauge group (once normalized at −1 the charge of

the field φ−). A non-perturbative ADS potential is generated:

Wnp = (N − Nf )

(

Λ3N−Nf

detM

)

1
N−Nf

. (A.3)

Including the most general disk-level perturbative open string coupling, and the coupling

between φ− and φ+ discussed in section 4, the gauge invariant superpotential reads9

W = (N − Nf )

(

Λ3N−Nf

detM

)

1
N−Nf

+

(

φ−

MP

)q′

λj̄
iMP M i

j̄ + mφ+φ− . (A.4)

The auxiliary fields and the D-term can now be calculated [16]:

(

F̄M†

)ī

i
= 2

[

−
(

M−1
)j̄

i

(

Λ3N−Nf

detM

)

1
N−Nf

+

(

φ−

MP

)q′

λj̄
iMP

]

[

(

M †M
)

1
2

]i

j̄

,

F̄φ̄−
= q′

(

φ−

MP

)q′−1

Tr (λM) + mφ+ ,

F̄φ̄+
= mφ− ,

D =

[

q′Tr
(

M †M
)1/2

− |φ−|2 + |φ+|2 +
ξ2

T + T̄

]

. (A.5)

From a simple analysis of the equations of motions for the mesons, φ− and φ+, it is

possible to see that in the minimum, under the conditions

Λ2 < m2 ≪ ξ2

T + T̄
< M2

P (A.6)

and in particular requiring10

q′Nf (detλ)
1
N

(

MP

m

)(〈φ−〉
MP

)q′
Nf

N
−2( Λ

MP

)

3N−Nf

N

≪ 1 , (A.7)

9For the aim of this appendix, the term W0 is completely irrelevant.
10This in order to assure that |〈φ+〉| ≪ |〈φ−〉|,in accord with what happens in the usual FI global model.
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the contribution of the D-term is negligible, 〈φ−〉2 ∼ ξ2

T+T̄
and the value of the F-terms for

the mesons are very small. These F-terms satisfy the relation

〈FM 〉
〈M〉 ∼ 〈Fφ−〉

〈φ−〉
∼ q′Nf (detλ)

1
N

(

Λ

MP

)

3N−Nf

N
( 〈φ〉

MP

)

q′Nf

N
−2

MP . (A.8)

Since in the potential the contributions of these F-terms are respectively proportional

to |〈FM 〉|2/|〈M〉| and |〈Fφ−〉|2, as long as the vev’s for the mesons |〈M〉| is very small

compared to |〈φ−〉|2, we are therefore allowed to integrate out the mesons M i
j̄

and the

effective superpotential we obtain has the form

W eff = N

(

Λ

MP

)

3N−Nf
N

(

φ−

MP

)

q′Nf
N

(detλ)
1
N M3

P + mφ+φ− . (A.9)

Nonetheless, as one can show resolving in the first approximation the equation F̄M† = 0,

the vev of the meson M i
j̄

is approximatively

〈M i
j̄〉 ∼ Nf (λ−1)ij̄(detλ)

1
N

(〈φ−〉
MP

)q′
Nf−N

N
(

Λ

MP

)

3N−Nf

N

M2
P (A.10)

and then, using (A.7) and λj̄
i ∼ δj̄

i , we have

|〈M〉|
|〈φ−〉|2

≪
(

m

MP

)(〈φ−〉
MP

)−q′

. (A.11)

Therefore, for m small enough (A.6) and for reasonable q′, this ratio is actually ≪ 1 and

the ”integration out” is consistent. By re-writing the superpotential (A.9) by using the

definitions

a = N (detλ)
1
N ,

e−bT =

(

Λ

MP

)

3N−Nf

N

,

q =
q′Nf

N
, (A.12)

we find exactly the form of the superpotential used in the equation (3.1) once the right

powers of MP restored.

As a numerical example, in order to check if the results obtained in the paper agree

with a reasonable nonperturbative scale Λ, we can consider the special case N = 2, Nf =

1, q′ = 2, λj̄
i ∼ δj̄

i , i.e. the case studied numerically in the section 5.5. With the choice of

the parameters done in that example, we can evaluate

Λ5/2 ∼ ae−btM
5/2
P ∼ 10−13M

5/2
P , (A.13)

which means that in this scenario we expect that the non-abelian gauge group U(N) enters

in a strong coupling regime at a sensible scale of order Λ ∼ 1014 GeV. Moreover, we can

check if in this case the approximations done for the ”integration out” step are good.

Actually, since m < 10−11MP and 〈φ−〉 ∼ 10−1MP , it is clear that (A.11) is verified and

that therefore the whole procedure is consistent.
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D. Lüst, S. Reffert, W. Schulgin and S. Stieberger, Moduli stabilization in type IIB

orientifolds. I: orbifold limits, Nucl. Phys. B 766 (2007) 68 [hep-th/0506090];

J.-P. Derendinger, C. Kounnas and P.M. Petropoulos, Gaugino condensates and fluxes in

N = 1 effective superpotentials, Nucl. Phys. B 747 (2006) 190 [hep-th/0601005].

[31] G. Villadoro and F. Zwirner, D terms from D-branes, gauge invariance and moduli

stabilization in flux compactifications, JHEP 03 (2006) 087 [hep-th/0602120].

[32] P. Binetruy, M.K. Gaillard and Y.-Y. Wu, Modular invariant formulation of multi-gaugino

and matter condensation, Nucl. Phys. B 493 (1997) 27 [hep-th/9611149]; Dilaton

stabilization in the context of dynamical supersymmetry breaking through gaugino

condensation, Nucl. Phys. B 481 (1996) 109 [hep-th/9605170].

[33] J.A. Casas, The generalized dilaton supersymmetry breaking scenario, Phys. Lett. B 384

(1996) 103 [hep-th/9605180].

[34] G.R. Dvali and A. Pomarol, Anomalous U(1) as a mediator of supersymmetry breaking, Phys.

Rev. Lett. 77 (1996) 3728 [hep-ph/9607383];

A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard

model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394].

[35] N. Arkani-Hamed and H. Murayama, Can the supersymmetric flavor problem decouple?,

Phys. Rev. D 56 (1997) 6733 [hep-ph/9703259].

[36] A.E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl.

Phys. B 416 (1994) 46 [hep-ph/9309299].

[37] A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric

and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426

[hep-ph/0211331].

– 26 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB306%2C269
http://arxiv.org/abs/hep-th/9303040
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB422%2C125
http://arxiv.org/abs/hep-ph/9308271
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB429%2C589
http://arxiv.org/abs/hep-th/9405188
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB206%2C480
http://arxiv.org/abs/0709.4060
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C322%2C419
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C322%2C419
http://arxiv.org/abs/hep-ph/9801271
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C106006
http://arxiv.org/abs/hep-th/0105097
http://jhep.sissa.it/stdsearch?paper=12%282004%29074
http://arxiv.org/abs/hep-th/0407130
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB766%2C68
http://arxiv.org/abs/hep-th/0506090
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB747%2C190
http://arxiv.org/abs/hep-th/0601005
http://jhep.sissa.it/stdsearch?paper=03%282006%29087
http://arxiv.org/abs/hep-th/0602120
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB493%2C27
http://arxiv.org/abs/hep-th/9611149
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB481%2C109
http://arxiv.org/abs/hep-th/9605170
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB384%2C103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB384%2C103
http://arxiv.org/abs/hep-th/9605180
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C77%2C3728
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C77%2C3728
http://arxiv.org/abs/hep-ph/9607383
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB388%2C588
http://arxiv.org/abs/hep-ph/9607394
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD56%2C6733
http://arxiv.org/abs/hep-ph/9703259
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB416%2C46
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB416%2C46
http://arxiv.org/abs/hep-ph/9309299
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C176%2C426
http://arxiv.org/abs/hep-ph/0211331


J
H
E
P
0
4
(
2
0
0
8
)
0
1
5

[38] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs2.0: a program to

calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176

(2007) 367 [hep-ph/0607059];

See also the web page http://wwwlapp.in2p3.fr/lapth/micromegas.

– 27 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C176%2C367
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C176%2C367
http://arxiv.org/abs/hep-ph/0607059
http://wwwlapp.in2p3.fr/lapth/micromegas

